PYRAMIDALHorn

Pyramidal Horn Antenna

Pyramidal Horn

Aperture Fields:

$$
\begin{aligned}
& E_{y}^{\prime}\left(x^{\prime}, y^{\prime}\right)=E_{0} \cos \left(\frac{\pi}{a_{1}} x^{\prime}\right) e^{-j\left[k\left(\frac{x^{\prime 2}}{2 \rho_{2}}+\frac{y^{\prime 2}}{2 \rho_{1}}\right)\right]} \\
& H_{x}^{\prime}\left(x^{\prime}, y^{\prime}\right)=-\frac{E_{0}}{\eta} \cos \left(\frac{\pi}{a_{1}} x^{\prime}\right) e^{-j\left[k\left[\frac{x^{\prime 2}}{2 \rho_{2}} \frac{y^{\prime 2}}{2 \rho_{1}}\right)\right]}
\end{aligned}
$$

Radiated Fields:

$$
\begin{align*}
E_{\theta}= & j \frac{k E_{0} e^{-j k r}}{4 \pi r}\left[\sin \phi(1+\cos \theta) I_{1} I_{2}\right] \tag{13-48b}\\
E_{\phi}= & j \frac{k E_{0} e^{-j k r}}{4 \pi r}\left[\cos \phi(1+\cos \theta) I_{1} I_{2}\right] \tag{13-48c}\\
I_{1}= & \frac{1}{2} \sqrt{\frac{\pi \rho_{2}}{k}}\left\{e^{j \frac{j_{x}^{k_{2}^{2} \rho_{2}}}{2 k}}\left[\left(C\left(t_{2}^{\prime}\right)-C\left(t_{1}^{\prime}\right)\right)-j\left(S\left(t_{2}^{\prime}\right)-S\left(t_{1}^{\prime}\right)\right)\right]\right. \\
& \left.+e^{\frac{j_{x}^{\prime \prime} \rho_{2}}{2 k}}\left[\left(C\left(t_{2}^{\prime \prime}\right)-C\left(t_{1}^{\prime \prime}\right)\right)-j\left(S\left(t_{2}^{\prime \prime}\right)-S\left(t_{1}^{\prime \prime}\right)\right)\right]\right\} \tag{13-46}\\
I_{2}= & \sqrt{\frac{\pi \rho_{1}}{k} e^{j \frac{k_{y}^{\prime} \rho_{1}}{2 k}}\left\{\left[\left(C\left(t_{2}\right)-C\left(t_{1}\right)\right)-j\left(S\left(t_{2}\right)-S\left(t_{1}\right)\right)\right]\right\}} \tag{13-47}
\end{align*}
$$

$$
\begin{aligned}
& \rho_{1}=\rho_{2}=6 \lambda \\
& a_{1}=12 \lambda \\
& b_{1}=6 \lambda \\
& a=0.5 \lambda \\
& b=0.25 \lambda
\end{aligned}
$$

Fig. 13.21

Chapter 13 Horn Antennas

Pyramidal Horn Antenna

$$
E_{y}^{\prime}\left(x^{\prime}, y^{\prime}\right)=E_{0} \cos \left(\frac{\pi}{a_{1}} x^{\prime}\right) e^{-j\left[k\left(\frac{x^{\prime 2}}{2 \rho_{2}}+\frac{y^{\prime 2}}{2 \rho_{1}}\right)\right]}
$$

Condition for Physical Realization:

$$
\begin{gathered}
p_{e}=\left(b_{1}-b\right)\left[\left(\frac{\rho_{e}}{b_{1}}\right)^{2}-\frac{1}{4}\right]^{1 / 2} \\
p_{h}=\left(a_{1}-a\right)\left[\left(\frac{\rho_{h}}{a_{1}}\right)^{2}-\frac{1}{4}\right]^{1 / 2} \\
p_{e}=p_{h}
\end{gathered}
$$

Pyramidal Horn: Design Procedure

Alternatively
Directivity of
Pyramidal Horn
Antenna can be obtained using Directivity

$$
G_{0} \simeq \frac{1}{2}\left(\frac{4 \pi}{\lambda^{2}} a_{1} b_{1}\right)
$$

curves for E-and

$$
\begin{array}{ll}
a_{1} \simeq \sqrt{3 \lambda \rho_{2}} \approx \sqrt{3 \lambda \rho_{h}} & \rho_{2} \simeq \rho_{h} \\
b_{1} \simeq \sqrt{2 \lambda \rho_{1}} \approx \sqrt{2 \lambda \rho_{e}} & \rho_{1} \simeq \rho_{e}
\end{array}
$$

H-Planes

Sectoral Horn antenna
$D_{p}=\frac{\pi \lambda^{2}}{32 a b} D_{E} D_{H}$

$$
p_{e}=\left(b_{1}-b\right) \sqrt{\left(\frac{p_{e}}{b_{1}}\right)^{2}-\frac{1}{4}}
$$

Examples

$$
\begin{aligned}
& \text { 1. } \rho_{1}=\rho_{2}=6 \lambda, a_{1}=5.5 \lambda, b_{1}=2.75 \lambda, a=0.5 \lambda, b=0.25 \lambda \\
& \rho_{e}=\sqrt{\rho_{1}{ }^{2}+\left(b_{1} / 2\right)^{2}}=\sqrt{(6)^{2}+(2.75 / 2)^{2}} \lambda=6.1555 \lambda \\
& \rho_{h}=\sqrt{\rho_{2}{ }^{2}+\left(a_{1} / 2\right)^{2}}=\sqrt{(6)^{2}+(5.5 / 2)^{2}} \lambda=6.6 \lambda \\
& p_{e}=(2.75-0.25) \lambda=\left[\left(\frac{6.1555}{2.75}\right)^{2}-\frac{1}{4}\right]^{1 / 2}=5.4544 \lambda \\
& p_{h}=(5.5-0.5) \lambda=\left[\left(\frac{6.6}{5.5}\right)^{2}-\frac{1}{4}\right]^{1 / 2}=5.4544 \lambda \\
& p_{e}=p_{h}=5.4544 \lambda
\end{aligned}
$$

$$
\begin{gathered}
\text { 2. } \rho_{1}=\rho_{2}=6 \lambda, a_{1}=12 \lambda, b_{1}=6 \lambda, a=0.5 \lambda, b=0.25 \lambda \\
\rho_{e}=\sqrt{\rho_{1}{ }^{2}+\left(b_{1} / 2\right)^{2}}=\sqrt{(6)^{2}+(6 / 2)^{2}} \lambda=6.7082 \lambda \\
\rho_{h}=\sqrt{\rho_{2}{ }^{2}+\left(a_{1} / 2\right)^{2}}=\sqrt{(6)^{2}+(12 / 2)^{2}} \lambda=8.4853 \lambda \\
p_{e}=(6-0.25) \lambda=\left[\left(\frac{6.7082}{6}\right)^{2}-\frac{1}{4}\right]^{1 / 2}=5.75 \lambda \\
p_{h}=(12-0.5) \lambda=\left[\left(\frac{8.4853}{12}\right)^{2}-\frac{1}{4}\right]^{1 / 2}=5.75 \lambda \\
p_{e}=p_{h}=5.75 \lambda
\end{gathered}
$$

Horn Antennas

Design of Pyramidal horn antenna

Design Procedure

- To design a pyramidal horn, one usually knows the desired gain GO and the dimensions a, b of the rectangular feed waveguide.
- The objective of the design is to determine the remaining dimensions (a1, b1, $\rho e, \rho h, P e$, and Ph) that will lead to an optimum gain.

The design equations are derived by firsts electing values of a1 and b1that lead to optimum directivities for the E - and H plane sectoral horns.

$$
a_{1} \simeq \sqrt{3 \lambda \rho_{2}}
$$

$$
b_{1} \simeq \sqrt{2 \lambda \rho_{1}}
$$

Since the overall efficiency (including both the antenna and aperture efficiencies) of a horn antenna is about 50\%. the gain of the antenna can be related to its physical area.
Thus it can be written by

$$
G_{0}=\frac{1}{2} \frac{4 \pi}{\lambda^{2}}\left(a_{1} b_{1}\right)=\frac{2 \pi}{\lambda^{2}} \sqrt{3 \lambda \rho_{2}} \sqrt{2 \lambda \rho_{1}} \simeq \frac{2 \pi}{\lambda^{2}} \sqrt{3 \lambda \rho_{h}} \sqrt{2 \lambda \rho_{e}}
$$

since for long horns $\rho 2 \approx \rho h$ and $\rho 1 \approx \rho e$.
For a pyramidal horn to be physically realizable, Pe and Ph must be equal. Using this equality, it can be shown that gain reduces to

$$
\left(\sqrt{2 \chi}-\frac{b}{\lambda}\right)^{2}(2 \chi-1)=\left(\frac{G_{0}}{2 \pi} \sqrt{\frac{3}{2 \pi}} \frac{1}{\sqrt{\chi}}-\frac{a}{\lambda}\right)^{2}\left(\frac{G_{0}^{2}}{6 \pi^{3}} \frac{1}{\chi}-1\right)
$$

where

$$
\begin{align*}
& \frac{\rho_{e}}{\lambda}=\chi \tag{13-56a}\\
& \frac{\rho_{h}}{\lambda}=\frac{G_{0}^{2}}{8 \pi^{3}}\left(\frac{1}{\chi}\right) \tag{13-56b}
\end{align*}
$$

This Equation is the horn-design equation .

1. As a first step of the design, find the value of χ which satisfies (13-56) for a desired gain GO (dimensionless). Use an iterative technique and begin with a trial value of

$$
\chi(\text { trial })=\chi_{1}=\frac{G_{0}}{2 \pi \sqrt{2 \pi}}
$$

2. Once the correct χ has been found, determine ρe and ρh using (13-56a) and (13-56b) respectively.
3. Find the corresponding values of $a 1$ and $b 1$.

$$
\begin{aligned}
& a_{1}=\sqrt{3 \lambda \rho_{2}} \simeq \sqrt{3 \lambda \rho_{h}}=\frac{G_{0}}{2 \pi} \sqrt{\frac{3}{2 \pi \chi}} \lambda \\
& b_{1}=\sqrt{2 \lambda \rho_{1}} \simeq \sqrt{2 \lambda \rho_{e}}=\sqrt{2 \chi \lambda}
\end{aligned}
$$

Problems of horn antenna

Example 13.6:

Given: X-Band (8.2-12.4 GHz), $f=11 \mathrm{GHz}$ Horn; Gain=22.6 dB

$$
a=0.9 \text { in }(2.286 \mathrm{~cm}), b=0.4 \text { in }(1.016 \mathrm{~cm})
$$

Find:
Dimensions Of Pyramidal Horn

Solution

$$
\begin{aligned}
& G_{0}(d B)=22.6=10 \log _{10} G_{0} \Rightarrow G_{0}=10^{2.26}=181.97 \\
& \text { At } f=11 \mathrm{GHz} \Rightarrow \lambda=\frac{30 \times 10^{9}}{11 \times 10^{9}}=2.7273 \mathrm{~cm} \\
& b=\frac{1.016}{2.7273} \lambda=0.3725 \lambda ; a=\frac{2.286}{2.7273} \lambda=0.8382 \lambda
\end{aligned}
$$

1. Initial value of χ

$$
\chi_{1}=\frac{G_{0}}{2 \pi \sqrt{2 \pi}}=\frac{181.97}{2 \pi \sqrt{2 \pi}}=11.5539
$$

which does not satisfy(12-56), or

$$
\left(\sqrt{2 \chi}-\frac{b}{\chi}\right)^{2}(2 \chi-1)=\left(\frac{G_{0}}{2 \pi} \sqrt{\frac{3}{2 \pi}} \frac{1}{\sqrt{\chi}}-\frac{a}{\lambda}\right)^{2}\left(\frac{G_{0}{ }^{2}}{6 \pi^{3}} \frac{1}{\chi}-1\right)
$$

After few tries, a more accurate value is

$$
\chi=11.1157
$$

2. $\rho_{e}=\chi \lambda=11.1157 \lambda=30.316 \mathrm{~cm}=11.935 \mathrm{in}$.

$$
\rho_{h}=\frac{G_{0}{ }^{2}}{8 \pi^{3}}\left(\frac{1}{\chi}\right) \lambda=12.0094 \lambda=32.753 \mathrm{~cm}=12.895 \mathrm{in} .
$$

3.

$$
\begin{aligned}
a_{1} & =\sqrt{3 \lambda \rho_{2}} \approx \sqrt{3 \lambda \rho_{h}}=\frac{G_{0}}{2 \pi} \sqrt{\frac{3}{2 \pi \chi}} \lambda=6.002 \lambda \\
& =16.370 \mathrm{~cm}=6.445 \mathrm{in} . \\
b_{1} & =\sqrt{2 \lambda \rho_{1}} \approx \sqrt{2 \lambda \rho_{e}}=\sqrt{2 \chi} \lambda=4.715 \lambda \\
& =12.859 \mathrm{~cm}=5.063 \mathrm{in} .
\end{aligned}
$$

$$
\text { 4. } p_{e}=\left(b_{1}-b\right)\left[\left(\frac{p_{e}}{b_{1}}\right)^{2}-\frac{1}{4}\right]^{1 / 2}=10.005 \lambda
$$

$$
=27.286 \mathrm{~cm}=10.743 \mathrm{in} .
$$

$$
p_{h}=\left(a_{1}-a\right)\left[\left(\frac{p_{h}}{a_{1}}\right)^{2}-\frac{1}{4}\right]^{1 / 2}=10.005 \lambda
$$

$$
=27.286 \mathrm{~cm}=10.743 \mathrm{in} .
$$

13.21. Design a pyramidal horn antenna with optimum gain at a frequency of 10 GHz . The overall length of the antenna from the imaginary vertex of the horn to the center of the aperture is 10λ and is nearly the same in both planes. Determine the
(a) Aperture dimensions of the horn (in cm).
(b) Gain of the antenna (in $d B$)
(c) Aperture efficiency of the antenna (in \%). Assume the reflection, conduction, and dielectric losses of the antenna are negligible.
(d) Power delivered to a matched load when the incident power density is 10μ watts $/ \mathrm{m}^{2}$.

13-18.

$$
\lambda=\frac{30 \times 10^{9}}{10 \times 10^{9}}=3 \mathrm{~cm}
$$

a.

$$
\begin{aligned}
& a_{1} \simeq \sqrt{3 \lambda \rho}=\sqrt{3 \lambda(10 \lambda)}=\sqrt{30 \lambda^{2}}=5.477 \lambda=16.43 \mathrm{~cm} \\
& b_{1} \simeq \sqrt{2 \lambda \rho}=\sqrt{20 \lambda^{2}}=4.472 \lambda=13.416 \mathrm{~cm}
\end{aligned}
$$

b. $\quad G_{0}=\frac{1}{2} \frac{4 \pi}{\lambda^{2}}\left(a_{1} b_{1}\right)=\frac{1}{2} \frac{4 \pi}{\lambda^{2}}(5.477 \lambda)(4.472 \lambda)=153.89=21.87 \mathrm{~dB}$
c. $e_{r} e_{c d} \varepsilon_{a p}=1 \cdot 1 \cdot \varepsilon_{a p}=\frac{1}{2}, \quad \varepsilon_{a p}=\frac{1}{2}=50 \%$
d. Aem $=\frac{\lambda^{2}}{4 \pi} G_{0}=\frac{3^{2}}{4 \pi}(153.89)=110.2156 \mathrm{~cm}^{2}=110.2156 \times 10^{-4} \mathrm{~m}^{2}$

$$
\begin{aligned}
& P_{\text {rec }}=W^{i} \text { Aem }=10 \times 10^{-6} \times 110.2156 \times 10^{-4}=1,102.156 \times 10^{-10}=11.02156 \times 10^{-8} \\
& P_{\text {rec }}=11.02156 \times 10^{-8}=0.1102156 \mu \text { Watts }
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=\frac{G_{0}}{2 \pi} \sqrt{\frac{3}{2 \pi \chi}} \lambda=\frac{50.7}{2 \pi} \sqrt{\frac{3}{2 \pi(2.96795)}} \lambda=3.23646 \lambda=8.82 .68 \mathrm{~cm}=3.475^{\prime \prime} \\
& b_{1}=\sqrt{2 \chi} \lambda=\sqrt{2(2.96795)} \lambda=2.43637 \lambda=6.6447 \mathrm{~cm}=2.616^{\prime \prime} \\
& \left.\begin{array}{rl}
P_{e}=\left(b_{1}-b\right)\left[\left(\frac{e_{e}}{b_{1}}\right)^{2}-\frac{1}{4}\right]^{1 / 2}=6.25263 \mathrm{~cm}=2.46167^{\prime \prime} \\
\begin{array}{rl}
P_{h}=\left(a_{1}-a\right)
\end{array}\left(\left(\frac{P_{h}}{a_{1}}\right)^{2}-\frac{1}{4}\right]^{1 / 2}=6.25269 \mathrm{~cm}=2.46169^{\prime \prime}
\end{array}\right\} \Rightarrow \rho_{e} \approx \rho_{h} \simeq 6.2526 \mathrm{~cm} \\
& \simeq 2.4617^{\prime \prime}
\end{aligned}
$$

13.16. A standard-gain X-band ($8.2-12.4 \mathrm{GHz}$) pyramidal horn has dimensions of $\rho_{1} \simeq 13.5 \mathrm{in} .(34.29 \mathrm{~cm}), \rho_{2} \simeq 14.2 \mathrm{in}$. $(36.07 \mathrm{~cm}), a_{1}=7.65 \mathrm{in} .(19.43 \mathrm{~cm})$, $b_{1}=5.65 \mathrm{in} .(14.35 \mathrm{~cm}), a=0.9 \mathrm{in} .(2.286 \mathrm{~cm})$, and $b=0.4 \mathrm{in} .(1.016 \mathrm{~cm})$.
(a) Check to see if such a horn can be constructed physically.
$13-15$

$$
\left.\begin{array}{l}
\rho_{1}=13.6^{\prime \prime}=34.49 \mathrm{~cm} \\
\rho_{2}=14.2^{\prime \prime}=36.07 \mathrm{~cm} \\
a_{1}=7.65^{\prime \prime}=19.43 \mathrm{~cm} \\
b_{1}=5.65^{\prime \prime}=14.35 \mathrm{~cm}
\end{array}\right\} \Rightarrow \begin{aligned}
& \rho_{e}=\left[\rho_{1}^{2}+\left(b_{1} / 2\right)^{2}\right]^{1 / 2}=13.7924^{\prime \prime}=35.0327 \mathrm{~cm} \\
& \rho_{h}=\left[\rho_{1}^{2}+\left(a_{1} / 2\right)^{2}\right]^{1 / 2}=14.7061^{\prime \prime}=37.3536 \mathrm{~cm} \\
& a=0.9^{\prime \prime}=2.286 \mathrm{~cm} \\
& b=0.4^{\prime \prime}=1.016 \mathrm{~cm}
\end{aligned}
$$

a. $P_{e}=\left(b_{1}-b\right) \sqrt{\left(\frac{l e}{b_{1}}\right)^{2}-\frac{1}{4}}=(5.65-0.4) \sqrt{\left(\frac{13.7924}{5.65}\right)^{2}-\frac{1}{4}}=12.544^{\prime \prime}=31.862 \mathrm{~cm}$

$$
P_{h}=\left(a_{1}-a\right) \sqrt{\left(\frac{P_{h}}{a_{1}}\right)^{2}-\frac{1}{4}}=(7.65-0.9) \sqrt{\left(\frac{14.2061}{7.65}\right)^{2}-\frac{1}{4}}=12.529^{\prime \prime}=31.8246 \mathrm{~cm}
$$

Therefore $\mathrm{Pe}_{e} \approx \mathrm{Ph}$, and the pyramidal horn is physically realizable

